

SUNFLOWER YIELD PREDICTION BASED ON HIGH RESOLUTION SATELLITE IMAGERY

Authors:

Branislav Pejak, Oskar Marko, Tatjana Lončar-Turukalo, Nataša Ljubičić, Vladimir Crnojević **Presenter:**

Branislav Pejak

Why use satellite imagery?

"Who stands on a hill, even a small one, sees more than he who stands below the hill."

Petar II Petrović Njegoš

"The Mountain Wreath", 1847

Why is crop yield such an important measure?

Objectives:

- optimise the storage capacity
- optimise logitiscs
- import/export strategy
- help farmers to create appropriate decisions
- market decisions

How it's currently done

Is it accurate?

Sometimes maybe yes, sometimes maybe...

First layer: Crop Classification

Sunflower fileds in Vojvodina region

More details:

15:45-15:55

Short oral presentations: Section 8

2. Branislav Pejak: Mapping sunflower areas using high resolution Sentinel-2 images

Big Data Analytics

Copernicus CC3S Climate Database

 ک ک

Agronomic Knowledge

Satellites

SoilGrids

Ground Truth

Farm survey

Yield Prediction

Yield prediction in different scales

3 APPROACHES:

- 1. Yield potential mapping
- 2. Yield prediction at the field level

3. Yield prediction on within-field scale

RESOLUTION

1. Yield potential mapping

- Data:
 - soil properties data (SoilGrids)
 - farm survey (3), 2015-2021
 - > Around 1000 ha / year
 - Around 20 parcel / year
- Machine Learning models:
 - Random Forest,
 - ➢ SVM,
 - > XGBoost,
 - Deep Neural Networks
- Resolution of output map: 250 m

Source: https://www.isric.org/sites/default/files/styles/gallery_big_image_900x700/public/SoilGrids_banner_web.png

2. Yield prediction at the field level

- Data:
 - ground truth (crop type),
 - satellite images (Copernicus hub),
 - meteo data,
 - > soil propreties,
 - farm survey (3), 2015-2021
 - ✤ Around 1000 ha / year
 - ✤ Around 20 parcel / year
- Machine Learning models:
 - Random Forest,
 - ➢ SVM,
 - XGBoost,
 - Deep Neural Networks
- Resolution: field level [t/ha]
- Performance:
 - ➢ PCC = 0.76
 - MAE = less than 0.3 t/ha

Source: https://i.ytimg.com/vi/bxxMXIDLHp4/maxresdefault.jpg

3. Yield prediciton on withinfield scale classfied fields

- Data:
 - yield monitor data (27 fields),
 - > satellite images,
 - meteo data,
 - > soil propreties.
- Machine Learning models:
 - Random Forest,
 - > SVM,
 - > XGBoost,
 - SGD,
 - Deep Neural Networks
- Resolution of output maps: 10 m
- Performance:
 - ➢ PCC = 0.83
 - MAE = less than 0.25 t/ha

Yield monitor data

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

