

Genomic prediction of yield tolerance to drought in sunflower genetic resources

B. Mangin & A. Duhnen

Presented by N. Langlade

Context

Genetic Resource Centre @ INRAE:

Marie-Claude Boniface and Camille Tapy with breeding companies Effort to maintain and characterize => need to optimize usage

Climatic Change :

 \rightarrow need to identify lines tolerant to abiotic stresses

 \rightarrow but very difficult : need to phenotype in numerous conditions and abiotic stresses are complex and interconnected

Previous works

- \rightarrow Plasticities to abiotic stresses for a core-collection are available (Mangin et al. 2017 Plant Cell Environ).
- \rightarrow Genomic prediction tools are developed and applied on sunflower (Mangin et al., 2017 Front in Plant Sc)

→ Can we predict plasticities to abiotic stresses for the GRC collection?

Genotyping Helianthus network collection

16 003 Markers High Quality

Developed in Sunrise (-> S. Muños)

Genomic prediction

Training Phenotypic data

• Oleosol project

- 126 restorer lines crossed to 2 different cmsPET1 testers
- 191 maintainer lines crossed to gms or cmsPEF1 tester
- 17 environments (year/site/condition) irrigated and non-irrigated
- 3 years: 2008 2010
- Conducted by private partners (Innolea, RAGT2n, Soltis, Syngenta)
- Grain, Oil Content, Oil Yield, Flowering Time, Plant Height

Mangin et al., 2017 Plant Cell Environ

Sunflower acreage in France in 2011 (Source: ONIDOL)

Prediction accuracy of breeding traits

Prediction of drought tolerance?

Experimental validation with historic data from GRC (Felicity Vear)

Flowering time

Oil content

Yield plasticity calculation: step 1 Stress modeling

Yield plasticity calculation: step 2 validating stress impact

Figure: H. Duruflé

Yield plasticity calculation: step 3 estimating plasticity

Genomic prediction

Accuracies

	B lines	R lines
Model using B lines only	0.41	
Model using B and R lines	0.38	0.12

Genotypes

- •24 B
- •24 R
- 8 observed
- •40 unobserved

Experimental validation: Heliaphen experiment

Gosseau et al., 2019 FiPS

HeliaDiv2: Experimental validation: Heliaphen experiment YIELD

Conclusions and perspectives

- Genomic prediction applied to GR
 - B-lines OK but R-lines accuracy dubious
 - FT and Oil content validated
 - Drought yield plasticity promising results but remains difficult

• New genotypic data

- Genotyping of remaing 1400 lines of GRC acquired in 2021
- New phenotypes
 - Growth, senescence
 - Using High Throughput Phenotyping
 - Quality
 - Disease resistance

Merci

- Brigitte Mangin and Alexandra Duhnen
- Nicolas Pouilly (genotyping)
- Nicolas Blanchet (Heliaphen phenotyping)
- GRC (Marie-Claude Boniface, Camille Tapy, Felicity Vear)
- Genetic material with the help of Soltis (Muriel Archipiano and Benoit Bleys)

HeliaDiv2: Experimental validation: Heliaphen experiment

HeliaDiv2: Experimental validation: Heliaphen experiment TKW

Unobserved genotypes

HeliaDiv2 : Phenotypic data

Average over >6 environments Difference B/R might be due to different testers

HeliaDiv2 Genomic prediction

• 11 phenotypes

- Grain yield
- Oil yield
- Oil content
- Plant height
- Flowering time
- Plasticity
 - Grain yield for drought stress
 - ... cold stress
 - ... nutrient stress
 - Oil yield ...

HeliaDiv2 : Prediction accuracy

				Predicted set	
	Trait	Training set	Environment set	В	R
	Flowering	В	MET	0.51	
	Flowering	В	S1	0.54	
	Flowering	BR	MET	0.51	0.12
	Flowering	BR	S1	0.53	0.16
	Height	В	MET	0.29	
	Height	В	S1	0.34	
racy	Height	BR	MET	0.37	0.36
0.46	Height	BR	S1	0.41	0.22
0.40	Oil content	В	MET	0.75	
0.01	Oil content	В	S1	0.70	
0.37	Oil content	BR	MET	0.75	0.27
0.07	Oil content	BR	S1	0.72	0.18
0.69	Yield	В	MET	0.47	
0.01	Yield	В	S1	0.53	
0.55	Yield	BR	MET	0.43	0.11
0.30	Yield	BR	S1	0.52	0.23
0.42	Yield tolerance to drought	В	MET	0.41	
0.18	Yield tolerance to drought	BR	MET	0.38	0.12
	Oil yield	В	MET	0.47	
	Oil yield	В	S1	0.37	
	Oil yield	BR	MET	0.44	0.06
	Oil yield	BR	S1	0.31	0.16

INRA

Test training set

Trait	Group	Accuracy
Flowering	В	0.46
 Flowering	R	0.01
Height	В	0.37
Height	R	-0.07
Oil content	В	0.69
Oil content	R	0.01
Yield	В	0.55
Yield	R	0.30
Oil yield	В	0.42
Oil yield	R	0.18

HeliaDiv2: Experimental validation

- Available data from Sunflower GRC (Felicity Vear)
 - Flowering time
 - Oil content
- New experiment on Heliaphen
 - Grain yield plasticity for drought stress