20th International Sunflower Conference, June 20 to 23, 2022, Novi Sad, Serbia

FEATURE SELECTION AND PERFORMANCE ASSESSMENT OF MACHINE LEARNING ALGORITHMS FOR SUNFLOWER OIL YIELD PREDICTION

Sandra Cvejić, Olivera Hrnjaković, Milan Jocković, Aleksandar Kupusinac, Ksenija Doroslovački, Ilija Radeka, Siniša Jocić, Dragana Miladinović, Vladimir Miklič

> Institute of Field and Vegetable Crops, Novi Sad, Serbia Faculty of Technical Sciences, University of Novi Sad, Serbia

AIM:

to investigate the potential use of ML algorithms for predicting sunflower oil yield
to compare two different subsets to identify important features for the prediction
to assess the performance of ML algorithms applied to sunflower oil yield prediction
to visually analyze the prediction models' results to guide applications in practice

2 DATA SUBSETS:

First dataset description	Feature					
Seed yield	Predictor	Second dataset				
Hybrid type (OIL, IMI, SU,	Predictor	description				
HO, CON)		Seed yield				
Resistance to broomrape	Predictor	Locality				
Resistance to downy	Predictor	Weather parameters				
mildew		Seed oil yield				
Maturity	Predictor					
Seed oil yield	Target					

ML ALGORITMS: Artificial Neural Network (ANN) Support Vector Regression (SVR) K-Nearest Neighbour (KNN) Random Forest Regressor (RF)

1250 sunflower hybrid samples

Feature

Predictor

Predictor

Predictor

Target

FEATURES ANALYSIS:

- The data in both subsets was split to train (70%) and test set (30%)
- There is a significant positive correlation between seed yield and oil yield as well as a small positive correlation between resistance to broomrape, ol, oil and oil yield

STATISTICAL RESULTS:

• Oil yield in relation to maturity and locality (weather conditions)

Locality	Koordinat es	Soil type	T _{avr} Apr 2018 (°C)	T _{avr} May 2018 (°C)	T _{avr} Jun 2018 (°C)	T _{avr} July 2018 (°C)	T _{avr} Avg 2018 (°C)	T _{avr} Sep 2018 (°C)	T _{avr} 2018 (°C)	Deviati on T _{avr} perenn ial (°C)	No days T _{max} >20°C	No days T _{max} >30°C	No days T _{max} >35° C	No. Rain y days	Realized vegetati on rainfalls in mm	Realized vegetati on rainfalls in %
1 - Subotica	46°05′53″N; 19°40′16″E	Sandy soil	16.5	20.4	21.6	23.0	24.3	18.0	20.63	+2.1	169	35	0	51	312	93
2 - Novi Sad	45°19′51″N; 19°50′59 E	Chernoze m	17.2	20.4	21.4	21.9	24.0	18.5	20.57	+2.3	173	37	0	51	436	121
3 - Kikinda	45°43′11″N; 20°18′07″E	Humogley + Salty soil	16.7	20.6	21.4	22.4	24.2	18.6	20.65	+2.1	176	43	0	55	409	124
4 - Vršac	44°58′25"N, 21°13′17" E	Chernoze m	17.3	20.3	20.9	22.1	24.1	18.4	20.52	+2.0	171	48	0	45	447	115

STATISTICAL RESULTS:

• Oil yield distribution in relation to IMI (statistically significant - p-value < 0.001)

• Oil yield distribution in relation to SU (statistically significant - p-value < 0.001)

STATISTICAL RESULTS:

• Oil yield distribution in relation to CON (statistically significant - p-value <0.001)

• Oil yield distribution in relation to OI (statistically significant - p-value < 0.001)

RESULTS:

• RMSE (Root Mean Squared Error) was used as the evaluation metric

First dataset results	
Algorithm	RMSE
SVR	189
RF	39
NN	200
KNN	65

Second dataset results					
Algorithm	RMSE				
SVR	162				
RF	66				
NN	390				
KNN	98				

• Graphs below show the best model's performance (RF), i.e. the relationship between actual values and predicted oil yield values

ACKNOWLEDGEMENT:

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА

Science Fund of the Republic of Serbia, through IDEAS project "Creating climate smart sunflower for future challenges" (SMARTSUN) grant number 7732457

Ministry of Education, Science and Technological Development of the Republic of Serbia, grant number: 451-03-68/2022-14/ 200032

Center of Excellence for Innovations in Breeding of Climate-Resilient Crops -Climate Crops, Institute of Field and Vegetable Crops, Novi Sad, Serbia

