

Resistance to *Orobanche cumana*: "We will keep on fighting until the end"

Stéphane Muños stephane.munos@inrae.fr @stephane_munos

Sunflower-Pests Interactions Group leader: Stéphane Muños

June 2022 members

Mireille Chabaud (IR): cell biology, phenotyping, transformation, project coordination Marie-Claude Boniface (TR, 50%): genetic resources, phenotyping Alexandra Legendre (AT): genomics, functional biology Stéphane Muños (IR): genomics, molecular genetics, project coordination **Permanent staff with complementary skills**

Estelle Bouvier (AI): phenotyping, microscopy Maylis Bobin (AI): phenotyping, molecular biology Lea Mouysset (Master student, Toulouse University): functional agronomy Camille Pubert (coll. MAS SEEDS, PhD student, Toulouse University): Genetics

O. cumana: a parasitic weed that specifically infects sunflower crop

Obligatory parasitic plant:

Non-photosynthetic No roots

Effect on seed number/capitula

Small seeds of Orobanche Cumana: rapid spreading

Biology cycle of Orobanche cumana

Orobanche cumana in the World

Virulence of Orobanche cumana populations

Broomrape populations differ from their virulence and aggressivity

O. cumana: a similar situation than Downy Mildew.

Their virulence (from A to H) is deduced from the resistance of a set of differential sunflower

annatypac									
genotypes.	T :	Proposed codes for O. cumana races							
	Line of sunnower -	100	300	700	710	730	770	771	773
	AD66	Sa	S	S	S	S	S	S	S
	K A-41	R	S	S	S	S	S	S	S
	J8281	R	R	S	S	S	S	S	S
	Record	R	R	R	S	S	S	S	S
	S1358	R	R	R	R	S	S	S	S
	P1380	R	R	R	R	R	S	S	S
	LC1093	R	R	R	R	R	R	S	S
	P96	R	R	R	R	R	R	R	S
	Historical race	А	В	С	D	Е	F	F or G?	F or G?

^a S: susceptible, R: resistant.

Leire Molinero-Ruiz et al., SJAR, 2015

The situation for races > E is unclear : F, F⁺, G, G⁺, G_{GV}, H We need an universal set of differential sunflower genotypes

Molecular diversity of the worlwide broomrape populations

Luyang Hu PhD student Zhejiang University INRAE (2-years stay)

Coll. Innolea

O. cumana Genomics

We sequenced the 19 chromosomes of the *O. cumana* genome (1.47 Gb) of IN23 population (homozygous population, Race F from Guadalquivir (IAS-CSIC, Spain).

of protein coding genes 43,313

More recently we obtained high quality genomes of 4 new races from other countries.

We also re-sequenced (Illumina PE sequencing) the genomes of 21 populations

-China: 6 -France: 3 -Spain: 5 (IN23 included) -Eastern-Europe:7

5,652,731 SNPs identified

Objectives: understand populations evolution and link polymorphisms to the virulence of the populations

How to control O. cumana?

1. Genetic resistances

ISC2022, June 22nd, 2022

Quantitative resistances

ORIGINAL RESEARCH published: 10 May 2016 doi: 10.3389/fpls.2016.00590

Sunflower Resistance to Broomrape (Orobanche cumana) Is Controlled by Specific QTLs for Different Parasitism Stages

Johann Louarn¹, Marie-Claude Boniface¹, Nicolas Pouilly¹, Leonardo Velasco², Begoña Pérez-Vich², Patrick Vincourt¹ and Stéphane Muños^{1*}

¹ LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France, ² Instituto de Agricultura Sostenible-Consejo Superior de Investigaciones Cientificas, Cordoba, Spain

Many QTLs but no complete resistance

Major resistance genes

Or5 mapped on LG3 (telomeric region)

System2 (chromosome 4)

Received: 28 January 2019 Accepted: 4 November 2019 Published online: 26 March 2020

DOI: 10.1002/csc2.20002

ORIGINAL RESEARCH ARTICLE

Crop Breeding & Genetics

Characterization of post-haustorial resistance to sunflower broomrape

 Alberto Martín-Sanz¹
 Begoña Pérez-Vich²
 Sandra Rueda¹

 José M. Fernández-Martínez²
 Leonardo Velasco² (5)

Crop Science

Identification of the *HaOr7* resistance gene

The physiological mechanism
 The molecular characterization

Identification of the HaOr7 gene

We screened by genotyping a large F2 population (14,000) and phenotype the recombinant plants during 2 years in south of spain

Mk 1

Functional characterization of the HaOr7 gene

Duriez et al. (Nature Plants, 2019)

system of sunflower root Susceptibility

system of sunflower root Resistance

A receptor-like kinase enhances sunflower resistance to Orobanche cumana

Pauline Duriez^{1,2}, Sonia Vautrin³, Marie-Christine Auriac¹, Julia Bazerque¹, Marie-Claude Boniface¹, Caroline Callot³, Sébastien Carrère¹, Stéphane Cauet¹, Mireille Chabaud¹, Fabienne Gentou², Marta Lopez-Sendon², Clémence Paris², Prune Pegot-Espagnet¹, Jean-Christophe Rousseaux², Begoña Pérez-Vich⁴, Leonardo Velasco⁴, Hélène Bergès³, Joël Piquemal² and Stéphane Muños¹*

Toward the identification of the avirulence gene interacting with *HaOr7* (coll. Syngenta, LIPME, CSIC)

Mapping of the Or_{Deb2} gene

A source of resistance to race G has been identified in the annual species *H. debilis* subsp. *tardiflorus* (2011)

The resistance is monogenic and dominant

Introgressed in H. annuus

Mapped on chromosome 4

Theoretical and Applied Genetics https://doi.org/10.1007/s00122-021-03979-9

ORIGINAL ARTICLE

Genetic and physiological characterization of sunflower resistance provided by the wild-derived Or_{Deb2} gene against highly virulent races of *Orobanche cumana* Wallr

Mónica Fernández-Aparicio¹ · Lidia del Moral¹ · Stéphane Muños² · Leonardo Velasco¹ · Begoña Pérez-Vich¹

Genome sequencing of the deb2 line

Belén Fernandez-Melero (PhD student CSIC-IAS, Spain, 4 months stay in my group)

Strong homology between the two accessions of *H. debilis Or*_{Deb2} under identification (IAS-CSIC)

The *HaOr5* gene as a model gene to better understand the molecular mechanisms of the interaction

Identification of the HaOr5 gene

Camille Pubert, Phd student (INRAE-MAS SEEDS)

Mapped based cloning of the *HaOr5* gene

Same strategy than for HaOr7 : screening by genotyping a large F2 population and phenotyping the recombinant plants

Genomic region restricted from 1.5 Mb to 193kb

Identification of the HaOr5 gene

Sequencing in Gentyane platform (INRAE Clermont Ferrand, France), 2 smrt cells HiFi + optical map in CNRGV (INRAE Toulouse, France) Susceptible HaOr5- line: 20 scaffolds N50 = 177Mb Size = 3.02Gb %N = 0,5%

```
LC1093:
21 scaffolds
N50 = 176Mb
Size = 3.01Gb
%N = 0,05%
```

\rightarrow Good quality of the two genome sequences

Identification of the HaOr5 gene

Comparison of sequence beetween nmk3 and nmk4 (D-genies)

193kb on XRQ

185kb on TFP4417

446kb on LC1093 INRAE

Large (> 200kb) insertion in LC1093 could contain the resistance gene

Functional validation of the major resistance genes

Sunflower root transformation using *Agrobacterium rhizogenes*

Mireille Chabaud (LIPME)

ISC2022, June 22nd, 2022

How to control O. cumana?

2. New control methods

ISC2022, June 22nd, 2022

A new ongoing project

The STIGO project in brief.

Deciphering the molecular mechanisms governing sunflower-specific recognition by *O. cumana*

Three main objectives of the STIGO Project:

1. Identification of the *O. cumana* seed germination stimulants (GS) and their biosynthesis genes in sunflower

using omics, biochemistry and genetic approaches

2. Characterizing the GS receptors in O. cumana

-*in vitro* approaches using the KAI2 receptor proteins -diversity of the receptors in worldwide populations -identification of germination-inhibiting molecules (large scale screening of chemical libraries)

3. Development of new control methods

-molecular assisted selection of new sunflower resistant varieties (non-GS) -new agro-chemical control (long-term)

Evaluation of new control methods

Mipep (micropeptides) are small pepdites (10-20 amino acidsthat can be synhtetized or produced in biotanks

Applied on plants, they can regulate gene expression and can affect phenotypes

Philippe Delavault's talk is following

OMOCO project:Assessment of winter cOver crops (Brassicaceae and/orFabaceae) andbiofuMigatiOn as a Control of sunflower brOomrape

<u>Objective</u> : Assessing the potential of cover crops to reduce sunflower broomrape damages by modulating seeds germination

Coll. MAS SEEDS, UMR AGIR (INRAE), UMR LIPME (INRAE)

(A) : Putting in contact Orobanche and cover crops residus

CONTROL

+ one species of covercrop

ISC2022, June 22nd, 2022

Many thanks to Collaborators

Local: Bioinformatics LIPME ASTR LIPME CNRGV UMR AGIR TPMP TRI imaging Get-Plage LRSV

National:

Terres Inovia GEVES Nantes University

International:

-China: IMAU (Jun Zhao), Zhejiang University (Weijun Zhu, Luyang Hu, PhD student, 2-years stay)

- -Spain: IAS-CSIC (Begoña Pérez-Vich, Leo Velasco, Belen Fernandez)
- -Netherlands: Wageningen (KeyGene, Martin DeVos)
- -USA: Jim Westwood (Virginia Tech University), USDA (Lora Marek)
- -Canada: UBC (Loren Rieseberg)
- -Japan: Satoko Yoshida

Private partners: Syngenta, Innolea, MAS SEEDS, Sofiproteol, Promosol, MicroPep

